Construction of Wavelets and Framelets by the Projection Method
نویسنده
چکیده
The projection method is a useful tool for analyzing various properties of multivariate refinable function vectors and for obtaining low-dimensional refinable function vectors and wavelets from high-dimensional ones. In this paper, we shall further study the projection method and its applications to multivariate wavelet and framelet systems. Examples will be given to illustrate the projection method and its applications in wavelet analysis.
منابع مشابه
The Projection Method for Multidimensional Framelet and Wavelet Analysis
The projection method is a simple way of constructing functions and filters by integrating multidimensional functions and filters along parallel superplanes in the space domain. Equivalently expressed in the frequency domain, the projection method constructs a new function by simply taking a cross-section of the Fourier transform of a multidimensional function. The projection method is linked t...
متن کاملDirectional Tensor Product Complex Tight Framelets and Image Denoising
Due to simple implementation and relatively easy construction of 1D wavelets, real-valued tensor product wavelets have been commonly used for high-dimensional problems. However, real-valued tensor product wavelets are known to have some shortcomings, in particular, they lack directionality. For example, for 2D data such as images, edge singularities are ubiquitous and play a more fundamental ro...
متن کاملHomogeneous Wavelets and Framelets with the Refinable Structure
Homogeneous wavelets and framelets have been extensively investigated in the classical theory of wavelets and they are often constructed from refinable functions via the multiresolution analysis. On the other hand, nonhomogeneous wavelets and framelets enjoy many desirable theoretical properties and are often intrinsically linked to the refinable structure and multiresolution analysis. In this ...
متن کاملBand-limited Wavelets and Framelets in Low Dimensions
In this paper, we study the problem of constructing non-separable band-limited wavelet tight frames, Riesz wavelets and orthonormal wavelets in R and R. We first construct a class of non-separable band-limited refinable functions in low-dimensional Euclidean spaces by using univariate Meyer’s refinable functions along multiple directions defined by classic box-spline direction matrices. These n...
متن کاملBiorthogonal wavelets and tight framelets from smoothed pseudo splines
In order to get divergence free and curl free wavelets, one introduced the smoothed pseudo spline by using the convolution method. The smoothed pseudo splines can be considered as an extension of pseudo splines. In this paper, we first show that the shifts of a smoothed pseudo spline are linearly independent. The linear independence of the shifts of a pseudo spline is a necessary and sufficient...
متن کامل